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Fig. 1: CuriousBot. We present a mobile robotic system that can (a) interactively explore the environment, such as inspecting hidden
spaces inside a cabinet or behind a box, (b) construct an actionable 3D relational object graph that encodes both the semantic and geometric
information of object nodes, along with various object relationships, and (c) perform manipulation tasks by retrieving objects through
traversal of the actionable 3D relational object graph.

Abstract— Mobile exploration is a longstanding challenge in
robotics, yet current methods primarily focus on active percep-
tion instead of active interaction, limiting the robot’s ability
to interact with and fully explore its environment. Existing
robotic exploration approaches via active interaction are often
restricted to tabletop scenes, neglecting the unique challenges
posed by mobile exploration, such as large exploration spaces,
complex action spaces, and diverse object relations. In this
work, we introduce a 3D relational object graph that encodes
diverse object relations and enables exploration through active
interaction. We develop a system based on this representation
and evaluate it across diverse scenes. Our qualitative and
quantitative results demonstrate the system’s effectiveness and
generalization capabilities, outperforming methods that rely
solely on vision-language models (VLMs).

I. INTRODUCTION
Exploration remains a significant challenge for mobile

robots, especially in complex household environments filled
with occlusions, such as objects concealed within cabinets,
hidden under furniture, or obscured behind other obstacles.
Traditional exploration methods primarily focus on active
perception [1, 2], aiming to determine the optimal camera
position to minimize unknown spaces, and often neglect the
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crucial aspect of active interaction, which involves deciding
where and how to physically interact with the environment to
reveal hidden spaces. While recent works like RoboEXP [3]
have considered active interaction, their focus is primarily
on tabletop manipulation, limiting their applicability in com-
plex, real-world mobile settings.

In contrast to tabletop scenarios, mobile exploration in
real-world environments introduces unique challenges:

• Expanded exploration space: the exploration area for
mobile robots is substantially larger and needs to utilize
complex navigation and mapping skills.

• Complex occlusion relationships: occlusions in house-
hold environments are intricate. While RoboEXP con-
siders basic relationships like on, belong, and
inside, real-world settings present complex occlu-
sions, such as items hidden beneath furniture or blocked
by other objects, requiring more sophisticated reasoning
and interaction strategies.

• Larger action space: mobile exploration involves a
broader action space that includes both navigation and
manipulation to handle various objects and scenes.

In this work, we tackle the challenges of active mobile
exploration using our 3D relational object graph powered by
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Visual Foundational Models (VFMs). Our system consists of
four modules - SLAM, Graph Constructor, Task Planner,
and Low-Level Skills, as shown in Figure 2.

The SLAM module takes in a sequence of RGBD obser-
vations and robot odometry, and outputs the camera pose.
Given observations and camera poses, our graph constructor
first builds object nodes by detecting and segmenting objects
via the open-vocabulary object detector and Segment Any-
thing [4, 5]. By leveraging spatial and semantic information,
we determine the relationships between nodes, which are
then used for downstream task planning. The task planning
module takes in the serialized object graph and generates
action plans using a Large Language Model (LLM). Finally,
low-level skills, consisting of several action primitives, exe-
cute the generated action plan.

We evaluate our system in various scenes requiring explo-
ration. It demonstrates the capability to handle a wide range
of object categories, including articulated, deformable, and
rigid objects. Furthermore, our 3D relational object graph can
encode multiple occlusion relationships commonly seen in
household environments, such as of, on, under, behind,
and inside. The system is also capable of adapting to
different environment layouts, such as a box-filled room or
a living room. We quantitatively analyze the behavior of our
system by evaluating it across five tasks, each repeated ten
times, and identify common failure patterns. Additionally,
we compare our method with the direct use of GPT-4V to
guide robot exploration. Our findings indicate that our 3D
relational object graph is more effective for task planning.

In summary, our contributions are threefold: i) We intro-
duce the 3D relational object graph, which can encode a
number of common object relations, enabling the mobile
robot to explore diverse everyday environments. ii) We
develop the CuriousBot system, which can automatically
construct the 3D object graph, plan exploration, and interact
with the environment to reduce unknown spaces. iii) We
conduct comprehensive experiments, demonstrating that our
system can fully explore environments and accurately build
the object graph. The testing scenes feature diverse object
categories, object relations, and scene layouts. Additionally,
we provide deeper insights into our system through error
breakdown and comparisons with baseline methods.

II. RELATED WORK
A. Robotic Exploration

Robotic exploration is crucial for many applications,
including search and rescue [6–8], object search [9–27],
and mobile manipulation [28–32]. The typical objective of
exploration is to minimize the unknown areas in the envi-
ronment [1, 2, 9, 10, 25, 33–47]. Recently, curiosity-driven
methods have emerged as another promising approach to
guide robotic exploration [48–51]. However, these methods
generally focus on exploration through active perception,
neglecting exploration via active interaction, which limits the
robot’s ability to fully explore environments, such as finding
objects inside cabinets.

The work most closely related to ours is RoboEXP [3],
where the robot interacts with the environment to build

a complete 3D object graph of the scene. However, their
focus is on tabletop scenes, which are less realistic and
challenging compared to our mobile settings. In contrast,
our approach emphasizes mobile exploration through active
interaction, which introduces unique challenges such as
larger exploration areas, more complex object relationships,
and a broader action space.

Fabian, et. al. also explores mobile exploration via active
interaction [52]. However, they do not consider the diverse
object relations in the real world, which are essential for
complex exploration behaviors. On the contrary, our 3D
relational object graph can encode five types of object
relations. Additionally, they only consider opening as a
manipulation skill and rely on AR markers in the real world
to guide manipulation. In contrast, we incorporate more
skills, including pushing, opening, lifting, flipping, and more,
without requiring additional markers.

B. 3D Scene Graph for Robotics
3D scene graph representation is widely used in robotic

manipulation and navigation [3, 53–69]. These represen-
tations often leverage 2D VFMs such as SAM, CLIP, or
DINO [5, 70–73] to extract 2D visual information, which
is then fused into 3D space. However, existing methods tend
to focus on the semantic understanding of objects, rather
than encoding complex object relations like on, inside, or
behind. Understanding such occlusion relations is crucial
for making informed decisions about where to explore and
how to manipulate objects. In contrast, our representation
encodes various types of occlusion relations in real-world
environments, allowing the mobile robot to actively de-
cide how to explore the environment. Although works like
ConceptGraph and SceneGPT [74, 75] account for spatial
relationships, they do not consider active interactions with
the environment, such as opening drawers. In contrast, our
representation considers how different actions can modify
the environment (e.g., opening a drawer to retrieve a toy
inside), allowing the system to choose the appropriate
exploration and manipulation skills.

C. Foundational Model for Robotics
Many previous studies have used the generalization ca-

pabilities, common sense reasoning, and long-horizon plan-
ning abilities of VFMs and LLMs for robotic tasks such
as manipulation [76–80], navigation [26, 62, 74, 81], and
planning [82, 83]. However, these studies did not explore
the potential of using VFMs and LLMs for active mobile
exploration. In our work, we leverage VFMs to build 3D
relational object graphs [4, 5]. We then employ an LLM
for decision-making based on an explicit 3D object graph
representation of the environment, which our experiments
demonstrate to be more efficient and effective than relying
on memorizing 2D observation history [84].

III. METHOD

As shown in Figure 2, our framework consists of four
modules - SLAM, Graph Constructor, Task Planner, and
Low-Level Skills, each of which will be explained in detail
in the following sections.
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Fig. 2: Method Overview. (a) In the perception pipeline, SLAM processes RGBD observations and odometry estimation from the robot
to output camera poses, which are used alongside the RGBD observations to construct an actionable 3D relational object graph. (b) The
3D relational object graph comprises object nodes containing both geometric and semantic information, as well as object edges that encode
complex object relations. (c) The serialized object graph is fed into the task planner, and the generated task plans are executed using
low-level skills to interactively explore the environment.

A. Problem Statement
We define the object graph as G = (V,E), where V =

{v0,v1, . . . ,vN} represents the set of object nodes, and E =
{e0,e1, . . . ,eM} represents the set of edges. Each node v
contains both semantic attributes, such as object labels,
and geometric attributes, such as point clouds and normal
estimations. Each edge e represents a directed connection
from node vi to node v j, along with their object relationship.

Our mobile exploration problem has three main objectives:
(1) minimizing the unknown space (Lunknown), (2) discov-
ering as many object nodes as possible (Lnodes), and (3)
establishing correct object relationships (Ledges). Specifically,
we denote the entire space as U ⊂ R3, with the unknown
space represented as Uunknown ⊂U. The volume of space U is
given by Vol(U), and we define the objective of minimizing
the unknown space as Lunknown = Vol(Uunknown)/Vol(U).
Additionally, assuming there is a ground truth node set Vgt in
the environment, our goal is to discover all possible nodes in
the environment. Thus, we define the loss for node discovery
as Lnodes = −|Vgt ∩V |/|Vgt|. Finally, assuming the ground
truth object relations are represented by Egt, we aim to find
the correct object relations, with the loss for edges defined
as Ledges =−|Egt ∩E|/|Egt|. In summary, our objective is to
minimize the following loss:

L =
Vol(Uunknown)

Vol(U)
−

|Vgt ∩V |
|Vgt|

−
|Egt ∩E|
|Egt|

(1)

B. SLAM
SLAM takes in a sequence of odometry estimation from

robot and RGBD observations, O0...t , where each Ot ∈
RH×W×4 represents one RGBD frame, and simultaneously
localizes the camera and constructs the map, which can be
described as the following probability estimation problem:

Localization: p(Tt |Tt−1,O0...t ,Mt−1), (2)
Mapping: p(Mt |T0...t ,O0...t), (3)

where Tt represents the estimated pose at time t, and Mt
denotes the map at time t. In practice, we use RTAB-Map
for SLAM to estimate the camera pose [85].

C. Graph Constructor
Given the current RGBD observation Ot , the correspond-

ing camera pose Tt , and the graph from the previous frame
Gt−1, we construct the graph Gt at time t. In summary, we
first segment the objects using YOLO-World and SAM and
obtain corresponding 3D point clouds [4, 5]. Next, we asso-
ciate the segmented objects with previous object nodes based
on geometric information and fuse the current observation to
obtain the current object nodes. Finally, we establish object
relationships by jointly considering geometric, semantic, and
action-related information.

Specifically, we first detect objects and obtain the cor-
responding 3D point clouds Pt = {p1

t , ..., pK
t }, where pi

t is
the point cloud of the ith object. We then associate these
with previous object point clouds Pt−1 = {p1

t−1, ..., pN
t−1}.

The association is resolved by checking detection label
consistency and calculating the Intersection over Union (IoU)
between Pt−1 and Pt . Specifically, we create a value matrix
C ∈ RK×N , where each element is defined as follows:

Ci j =

{
IoU(pi

t , p j
t−1), if they have the same label

0, otherwise.
(4)

For the ith detected object pi
t , if max j∈{1,...,N}Ci j is below

a threshold, it is considered a newly detected object. Other-
wise, the ith detected object is associated with the existing
object that has the highest Ci j value. After associating the
current detection with the existing object graph, we could
update the existing object nodes with the current observation.

We jointly consider geometric information, semantic infor-
mation, and action information to construct object relations.
For example, we use geometric information, such as the
bounding boxes of two objects, to determine whether one
object is on top of another. Semantic information, like object
labels, is also used. For instance, if a handle is close to a
cabinet, the handle is considered part of the cabinet. Lastly,
action information is helpful in determining object relations.
For example, when lifting an object to reveal a hidden space,
the newly found object is located beneath the lifted object.
In summary, our graph can encode five object relations,



(a) Robot (b) Objects
Fig. 3: Experiment Setup. (a) illustrates the use of a Spot robot
equipped with an external RealSense 455. (b) showcases the diverse
objects used, emphasizing the system’s generalization capabilities
across various object types, scenes, and object relations.

including behind, of, inside, on, and under, as shown
in Figure 5. Further details on the method can be found on
the project page.

D. Task Planner
We input the serialized object graph into the LLM to plan

skills. For serialization, we perform a depth-first search over
the object graph and serialize it based on the object label
and index. Additionally, we provide the LLM with several
simple examples to help it learn how to plan effectively.

E. Low-Level Skills
In our work, we implement several primitive skills, includ-

ing opening, lifting, pushing, collecting objects, sitting, and
flipping. The skill output by the task planner consists of the
skill name from our skill library and the target object index.
Given this skill information, we execute the corresponding
skill to explore the environment.

IV. EXPERIMENT
In our experiments, we aim to answer the following

questions: (1) What kinds of tasks can be enabled by our
system, and what scenarios can our robot explore? (2) How
does each component perform, and what are the common
failure patterns? (3) How will the whole system perform if
we remove some of its components?

A. Experiment Setup
We conduct experiments using the Boston Dynamics Spot

as the mobile manipulator. An additional RealSense 455
camera is installed at the front to enhance environmental
observation, as shown in Figure 3. For computation, we use
a desktop equipped with an Nvidia RTX A6000 GPU and an
AMD CPU with 128GB of memory. Our system is evaluated
on diverse daily objects, as shown in Figure 3. We set up
the environment in a 3m × 4m room.

B. Mobile Exploration in Various Scenes
We qualitatively evaluate our system on diverse scenes, as

shown in Figure 5. We would like to highlight the following
aspects of our system’s capabilities:

Diverse Object Categories. Our system operates in sce-
narios containing various types of objects, such as articulated
objects, deformable objects, and rigid objects, demonstrating
its generalization capabilities across different object types.

Various Object Relations. Our system encodes five types
of object relations commonly observed in the real world,
which are crucial for exploration. For instance, the robot
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Fig. 4: Failure Breakdown. We analyze the failure modes of
our system during exploration tasks, identifying three main causes:
perception failure, decision failure, and action failure.

understands that there is unknown space behind the brown
box, requiring it to push the box away to reveal the space
behind, as shown in Figure 5 (iii).

Different Layouts. The test scenarios include scenes of
varying scales and layouts, from small setups like piles of
cloth to larger household environments, which demonstrate
that our system can generalize to various scenes.

Diverse Interactions. The robot interacts with the en-
vironment and explores the scene in multiple ways. For
example, the robot can grasp an object rigidly, such as
opening a cabinet shown in Figure 5 (i). It can also interact
with objects nonprehensilely using its arm instead of the
gripper, as illustrated in Figure 5 (i) and (iii). Additionally,
the robot can actively move the camera around without
manipulating objects, such as sitting down to check the space
under a table, as shown in Figure 5 (iv).

C. Failure Breakdown
We conduct experiments involving tasks such as flipping

boxes, opening drawers, checking underneath objects, push-
ing boxes, and lifting cloth to analyze the system’s perfor-
mance. Each task is repeated ten times, with the success rate
recorded, and the failure breakdown is shown in Figure 4.
A rollout is considered successful if the robot successfully
completes all exploration skills.

The overall success rate is 82%. For the failure cases,
we categorize the primary reasons into perception failure,
decision failure, and action failure. Perception failure occurs
when inaccurate perception results lead to unreasonable plans
in downstream task planning or incorrect action execution.
Decision failure happens when, despite having a correct se-
rialized graph, the task planner makes an incorrect decision.
Action failure occurs when, despite having a correct task
plan and an accurate object graph, the skill execution fails.

In cases of perception failure, two major causes are an
inaccurate object graph due to imprecise SLAM and errors
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Fig. 5: Qualitative Results. We evaluate our system’s exploration capabilities across various tasks, including pushing the chair aside to
reveal space behind it, lifting cloth to check underneath, flipping open boxes to inspect the contents, and exploring a household scene.
These tasks showcase the system’s ability to generalize across different object types, scenarios, and object relations. Additional tasks can
be found on the project page.
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from the open-vocabulary object detector. For decision fail-
ure, the task planner can fail in predicting the correct skills
for the corresponding object nodes. Regarding action fail-
ures, we highlight the complexity of real-world manipulation,
such as the early release of the gripper, loose grasping, and
unexpected interference between the robot and the object.

LLaVa Gemini GPT-4o Heuristics Ours

Flipping Boxes

Success ↑ 0% 0% 0% 0% 80%
OR ↑ 0% 0% 0% 0% 70%
GED ↓ 2.3 2.3 2.1 2 1

Opening Drawers

Success ↑ 40% 80% 60% 60% 80%
OR ↑ 60% 90% 80% 72% 88%
GED ↓ 7.5 5.9 6.1 3 2.4

Checking Underneath

Success ↑ 60% 40% 0% 0% 90%
OR ↑ 60% 40% 0% 0% 90%
GED ↓ 2.2 2.7 3.2 3.1 1.5

Pushing Boxes

Success ↑ 0% 0% 0% 0% 70%
OR ↑ 0% 0% 0% 0% 70%
GED ↓ 4.1 4.3 4 4 1.2

Lifting Cloth

Success ↑ 10% 40% 100% 0% 90%
OR ↑ 10% 40% 100% 0% 90%
GED ↓ 2 1.9 1.2 2.2 0.3

Average

Success ↑ 22% 32% 32% 12% 82%
OR ↑ 26% 34% 36% 14.4% 81.6%
GED ↓ 3.62 3.42 3.32 2.86 1.28

TABLE I: Quantitative Results. We quantitatively evaluate our
system on five tasks, each repeated ten times, and compare it
with four baselines: LLaVa, Gemini, GPT-4o, and heuristics. The
evaluation metrics include success rate, object recovery, and Graph
Editing Distance (GED). Our results show that our approach is
more effective at accomplishing exploration tasks and is capable of
constructing more accurate object graphs.

D. Comparisons with Baselines
To study the effectiveness of our method, we compare our

system with the following baselines on the same five tasks
as in Section IV-C:

• LLaVa: We directly feed the current RGB observation
and the same text prompt as our LLM task planner
into LLaVa, the state-of-the-art open-source Vision Lan-
guage Model (VLM) [86, 87]. Because VLM does not
equip manipulation skills, a human operator will help
VLM finish manipulation.

• Gemini: Similar to the LLaVa baseline, with the only
change being the substitution of LLaVa with Gemini, a
state-of-the-art closed-source VLM [88].

• GPT-4o: Similarly, we replace the VLM with GPT-4o,
another state-of-the-art VLM [84].

• Heuristics: We implement a heuristic exploration policy
where the robot will open all handles.

We evaluate performance using three metrics: 1) Success
Rate: A rollout is considered successful if all exploration

skills are correctly executed. 2) Object Recovery (OR):
Assuming the ground truth object nodes are Vgt and the
discovered object nodes are V , object discovery is defined
as |Vgt∩V |/|Vgt|. 3) Graph Editing Distance (GED): If the
cost of adding, deleting, or moving one edge or node is 1,
GED is defined as the total cost of editing the final graph G
to match the ground truth graph Ggt.

Table I summarizes our quantitative results. We found our
3D relational object graph is more effective than feeding
RGB observations into a VLM. This is because our repre-
sentation explicitly represents the topological relationships
of object nodes, leading to more effective task planning
compared to requiring VLM to memorize observations and
reason object relations implicitly. Additionally, our action-
able object graph grounds actions within the representation,
while RGB observations alone do not provide sufficient
information for low-level skill selection. Additionally, while
simple exploration heuristics may yield comparable perfor-
mance in certain tasks, they do not generalize to other tasks.

E. Ablation Study

We also study how our system’s performance varies with
the number of examples provided to the LLM. We reduce
the number of examples from 7 to 1 and evaluate the
performance on three tasks: flipping boxes, pushing boxes,
and lifting cloth, with each task repeated three times. Table II
shows performance decreases as the number of examples
decreases, underscoring that the examples we provided to
the LLM are both minimal and necessary for task planning.

Number of Examples 7 (Ours) 5 3 1

Success Rate 89% 67% 56% 11%
Object Recovery 89% 67% 56% 11%

GED 0.33 0.89 1.00 2.67

TABLE II: Ablation Study. We examine how our system’s
performance changes based on the number of examples fed into the
LLM. This figure shows that performance worsens as the number
of examples decreases, demonstrating that the examples we provide
are both minimal and necessary.

V. CONCLUSION

Interactive mobile exploration has been a longstanding and
essential problem in robotics. However, existing approaches
to mobile exploration primarily focus on active perception
rather than active interaction, which limits the robot’s abil-
ity to fully explore the environment. Current methods for
robotic exploration via active interaction are mainly focused
on tabletop scenes, overlooking the unique challenges of
mobile settings, such as expansive exploration spaces, large
action spaces, and diverse object relations. We introduce the
3D relational object graph, which encodes diverse object
relations, and build a system capable of exploration through
active interaction based on this representation. We evaluate
our system in diverse scenes, demonstrating its effectiveness
and generalization capabilities qualitatively. Our quantitative
results further underscore its effectiveness compared to di-
rectly using VLMs.



REFERENCES

[1] C. Cao, H. Zhu, H. Choset, and J. Zhang, “Tare: A hi-
erarchical framework for efficiently exploring complex
3d environments.” in Robotics: Science and Systems,
vol. 5, 2021, p. 2.

[2] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick,
“Sensor-based exploration: Incremental construction of
the hierarchical generalized voronoi graph,” The Inter-
national Journal of Robotics Research, vol. 19, no. 2,
pp. 126–148, 2000.

[3] H. Jiang, B. Huang, R. Wu, Z. Li, S. Garg, H. Nayyeri,
S. Wang, and Y. Li, “Roboexp: Action-conditioned
scene graph via interactive exploration for robotic ma-
nipulation,” arXiv preprint arXiv:2402.15487, 2024.

[4] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and
Y. Shan, “Yolo-world: Real-time open-vocabulary ob-
ject detection,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), 2024.

[5] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-
Y. Lo, P. Dollár, and R. Girshick, “Segment anything,”
arXiv:2304.02643, 2023.

[6] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep
reinforcement learning robot for search and rescue
applications: Exploration in unknown cluttered environ-
ments,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 610–617, 2019.

[7] Y. Liu and G. Nejat, “Robotic urban search and rescue:
A survey from the control perspective,” Journal of
Intelligent & Robotic Systems, vol. 72, pp. 147–165,
2013.

[8] Y. Mei, Y.-H. Lu, C. G. Lee, and Y. C. Hu, “Energy-
efficient mobile robot exploration,” in Proceedings
2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. IEEE, 2006, pp. 505–
511.

[9] K. Zheng, A. Paul, and S. Tellex, “A system for
generalized 3d multi-object search,” in 2023 IEEE
International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 1638–1644.

[10] K. Zheng, R. Chitnis, Y. Sung, G. Konidaris,
and S. Tellex, “Towards optimal correlational object
search,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 7313–7319.

[11] K. Zhou, K. Zheng, C. Pryor, Y. Shen, H. Jin, L. Getoor,
and X. E. Wang, “Esc: Exploration with soft common-
sense constraints for zero-shot object navigation,” in In-
ternational Conference on Machine Learning. PMLR,
2023, pp. 42 829–42 842.

[12] R. Ramrakhya, E. Undersander, D. Batra, and A. Das,
“Habitat-web: Learning embodied object-search strate-
gies from human demonstrations at scale,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022, pp. 5173–5183.

[13] A. J. Zhai and S. Wang, “Peanut: Predicting and
navigating to unseen targets,” in Proceedings of the

IEEE/CVF International Conference on Computer Vi-
sion, 2023, pp. 10 926–10 935.

[14] W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mot-
taghi, “Visual semantic navigation using scene priors,”
arXiv preprint arXiv:1810.06543, 2018.

[15] O. Maksymets, V. Cartillier, A. Gokaslan, E. Wijmans,
W. Galuba, S. Lee, and D. Batra, “Thda: Treasure
hunt data augmentation for semantic navigation,” in
Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 15 374–15 383.

[16] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kem-
bhavi, “Simple but effective: Clip embeddings for em-
bodied ai,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp.
14 829–14 838.

[17] K. Yadav, R. Ramrakhya, A. Majumdar, V.-P. Berges,
S. Kuhar, D. Batra, A. Baevski, and O. Maksymets,
“Offline visual representation learning for embodied
navigation,” in Workshop on Reincarnating Reinforce-
ment Learning at ICLR 2023, 2023.

[18] H. Du, X. Yu, and L. Zheng, “Learning object relation
graph and tentative policy for visual navigation,” in
Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings,
Part VII 16. Springer, 2020, pp. 19–34.

[19] J. Ye, D. Batra, A. Das, and E. Wijmans, “Auxiliary
tasks and exploration enable objectgoal navigation,” in
Proceedings of the IEEE/CVF international conference
on computer vision, 2021, pp. 16 117–16 126.

[20] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa,
D. Parikh, M. Savva, and D. Batra, “Dd-ppo: Learn-
ing near-perfect pointgoal navigators from 2.5 billion
frames,” arXiv preprint arXiv:1911.00357, 2019.

[21] G. Georgakis, B. Bucher, K. Schmeckpeper, S. Singh,
and K. Daniilidis, “Learning to map for active seman-
tic goal navigation,” arXiv preprint arXiv:2106.15648,
2021.

[22] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and
R. Salakhutdinov, “Learning to explore using active
neural slam,” arXiv preprint arXiv:2004.05155, 2020.

[23] H. Luo, A. Yue, Z.-W. Hong, and P. Agrawal, “Stub-
born: A strong baseline for indoor object navigation,” in
2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 3287–
3293.

[24] S. K. Ramakrishnan, D. S. Chaplot, Z. Al-Halah, J. Ma-
lik, and K. Grauman, “Poni: Potential functions for
objectgoal navigation with interaction-free learning,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 18 890–
18 900.

[25] N. Yokoyama, S. Ha, D. Batra, J. Wang, and B. Bucher,
“Vlfm: Vision-language frontier maps for zero-shot
semantic navigation,” in 2024 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE,
2024, pp. 42–48.

[26] Y. Dai, R. Peng, S. Li, and J. Chai, “Think, act, and ask:



Open-world interactive personalized robot navigation,”
in 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2024, pp. 3296–3303.

[27] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese,
“Scene memory transformer for embodied agents in
long-horizon tasks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
2019, pp. 538–547.

[28] D. Misra, A. Bennett, V. Blukis, E. Niklasson,
M. Shatkhin, and Y. Artzi, “Mapping instructions to
actions in 3d environments with visual goal prediction,”
arXiv preprint arXiv:1809.00786, 2018.

[29] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi,
“Visual room rearrangement,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 5922–5931.

[30] D. Batra, A. X. Chang, S. Chernova, A. J. Davison,
J. Deng, V. Koltun, S. Levine, J. Malik, I. Mordatch,
R. Mottaghi, et al., “Rearrangement: A challenge for
embodied ai,” arXiv preprint arXiv:2011.01975, 2020.

[31] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev,
and S. Savarese, “Relmogen: Leveraging motion gen-
eration in reinforcement learning for mobile manipula-
tion,” arXiv preprint arXiv:2008.07792, 2020.

[32] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt,
L. Weihs, E. Kolve, A. Kembhavi, and R. Mottaghi,
“Manipulathor: A framework for visual object manip-
ulation,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2021, pp.
4497–4506.

[33] C. Cao, H. Zhu, F. Yang, Y. Xia, H. Choset, J. Oh,
and J. Zhang, “Autonomous exploration development
environment and the planning algorithms,” in 2022
International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 8921–8928.

[34] J. Yan, X. Lin, Z. Ren, S. Zhao, J. Yu, C. Cao, P. Yin,
J. Zhang, and S. Scherer, “Mui-tare: Cooperative multi-
agent exploration with unknown initial position,” IEEE
Robotics and Automation Letters, vol. 8, no. 7, pp.
4299–4306, 2023.

[35] C. Cao, H. Zhu, Z. Ren, H. Choset, and J. Zhang,
“Representation granularity enables time-efficient au-
tonomous exploration in large, complex worlds,” Sci-
ence Robotics, vol. 8, no. 80, p. eadf0970, 2023.

[36] B. Yamauchi, “A frontier-based approach for au-
tonomous exploration,” in Proceedings 1997 IEEE In-
ternational Symposium on Computational Intelligence
in Robotics and Automation CIRA’97.’Towards New
Computational Principles for Robotics and Automa-
tion’. IEEE, 1997, pp. 146–151.

[37] D. Holz, N. Basilico, F. Amigoni, and S. Behnke,
“Evaluating the efficiency of frontier-based exploration
strategies,” in ISR 2010 (41st International Symposium
on Robotics) and ROBOTIK 2010 (6th German Con-
ference on Robotics). VDE, 2010, pp. 1–8.

[38] M. Kulich, J. Faigl, and L. Přeučil, “On distance utility
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