
Supplementary Materials

Yixuan Wang1,2, Leonor Fermoselle2, Tarik Kelestemur2, Jiuguang Wang2, Yunzhu Li1

I. METHOD

A. IoU Computation

To compute the IoU of two point clouds, we first compute
the distance between each point from two point clouds. If a
point’s minimum distance to another point cloud is smaller
than the predefined threshold τ , this point is considered
an “intersection”. After counting all intersections, we can
compute IoU by dividing the intersections by the total point
number. The detailed algorithm is shown in Algorithm 1.

Algorithm 1 IoU Between Point Clouds
Input: Two point clouds A ∈ RN×3, B ∈ RM×3; threshold τ

Output: IoU matrix IoU
1: if |A|= 0 or |B|= 0 then return 0
2: Compute distances D between all points in A and B:

Dk,l = ∥A[k]−B[l]∥ , ∀k = 1, . . . ,N; l = 1, . . . ,M

3: Compute minimum distances for each point:

d(A)
k = min

l
Dk,l , ∀k = 1, . . . ,N

d(B)
l = min

k
Dk,l , ∀l = 1, . . . ,M

4: Create masks based on threshold τ:

maskA[k] =

{
1, if d(A)

k < τ

0, otherwise

maskB[l] =

{
1, if d(B)

l < τ

0, otherwise

5: Compute sums of masks:

SA =
N

∑
k=1

maskA[k], SB =
M

∑
l=1

maskB[l]

6: Compute IoU:

IoU =
SA +SB

N +M+ ε

7: return IoU

B. Unknown Space

Using depth image and camera parameters, we could
create a voxel representation of the space. For each voxel, we
can have labels, such as unexplored, free, unknown,
and outside. The definition of each label is listed below:

https://bdaiinstitute.github.io/curiousbot/
1Columbia University 2Boston Dynamics AI Institute

• unexplored: If a voxel is never viewed by a se-
quence of camera observations, the voxel is labeled as
unexplored.

• free: If a voxel is viewed by a sequence of camera
observations and it is in the free space, the voxel is
labeled as free.

• unknown: If a voxel is viewed by a sequence of camera
observations and it is occluded, the voxel is labeled as
unknown.

• outside: If a voxel is viewed by a sequence of camera
observations and it is outside of the room, the voxel is
labeled as outside.

Such a voxel representation is critical for VLM decision. For
example, when there are a lot unknown voxels inside the
cabinet or behind the box, VLM will utilize such information
regarding the unknown space to decide where to interact.

C. Relation Detection

Given such voxel representation, we can define the fol-
lowing object relations:

• of: If a child object can be possibly a part of the parent
object, such as a handle is possibly a part of a cabinet,
and their point cloud centroids are close enough, the
child object node is of the parent object node.

• inside: If a child object is found after opening or
flipping a parent object, the child object is inside the
parent object node.

• on: If a child object’s bounding box is within the parent
object’s bounding box in the x-y plane, and the child
object’s lowest z value is close to the parent object’s
highest z value, the child object is on the parent object
node.

• under: If a child object is found after sitting down
or lifting, the child object is under the parent object
node.

• behind: If a child object is found after pushing a
parent object aside, the child object node is behind
the parent object node.

D. Graph Serialization

We serialize the graph using the depth-first search. The
detailed algorithm is presented in Algorithm 2.

https://bdaiinstitute.github.io/curiousbot/

Algorithm 2 Serialize Graph
Input: A graph G with nodes V and edges E
Output: A string texts representing the serialized graph

1: Initialize texts← “root\n”
2: Initialize to visit← empty stack
3: Add root node to to visit
4: while to visit is not empty do
5: // Append the text of the current node to final texts
6: Pop first node curr node from to visit
7: Obtain text curr text of curr node
8: Append curr text to return texts
9:

10: // Find children nodes and add to to visit
11: child nodes← curr node.get children()
12: for all child node in child nodes do
13: Add child node to to visit
14: return return texts

E. Prompts Examples

Here are all the prompt examples we use. We provide
minimal prompt examples to the robot for task planning.

explore one cabinet with one handle
graph:
root
\---cabinet_0

\---handle_1 [obstruction]

answer
action:
open handle_1 # affected_objects:
cabinet_0, handle_1

explore one cabinet with multiple
handles
graph:
root
\---cabinet_0

|---handle_2 [obstruction]
\---handle_1 [obstruction]

answer
action:
open handle_2 # affected_objects:
cabinet_0, handle_2
open handle_1 # affected_objects:
cabinet_0, handle_1

explore one cabinet with multiple
handles, while some handles are opened
graph:
root
|---chair_3 [obstruction]
|---box_4 [obstruction]
|---cloth_5 [obstruction]
\---cabinet_0

|---handle_1 (opened)
\---handle_2 [obstruction]

answer
action:
push chair_3 # affected_objects: chair_3
push box_4 # affected_objects: box_4
lift cloth_5 # affected_objects: cloth_5
open handle_2 # affected_objects:
cabinet_0, handle_2

explore several cabinets and
obstruction objects
graph:
root
|---cabinet_0
| |---handle_1 (opened)
| | \---object_3
| \---handle_2 (opened)
| \---object_5
|---object_7
|---box_9 [obstruction]
\---cabinet_6

\---handle_4 [obstruction]

answer
action:
open handle_4 # affected_objects:
cabinet_6, handle_4
push box_9 # affected_objects: box_9

explore several cabinets and
obstruction objects
graph:
root
|---cabinet_0
| |---handle_1 (opened)
| | \---object_3 (moved)
| | \---object_8
| \---handle_2 (opened)
| \---object_5 (moved)
|---object_7
|---box_9
\---cabinet_6

\---handle_4 (opened)

answer
action:
none

explore several cabinets and
obstruction objects
graph:
root
|---cabinet_0
| |---handle_1 (opened)
| | \---object_3 (moved)

cloth
cloth

bottle

?

t

(ii) Lift Cloth

lift

?

lift

t

box chair

cabinet

handle handle

can shoe

1

2 2

33

?

(i) Pushing Away Chair

push
?

open
open

t

box

open box

banana

open box open box

toy toy
?

? ?

?push

flip

(iii) Flip Open Boxes

t
(iv) Explore Household Scene

?

?

sit down

open

cabinet table

mug
cabinet chair

chair
table

handle handle

toy shoeshoetoy

4
2

3

2

3

3 3

behind
2
1

of
3 inside
4 on
5 under

5

5

1
3

3 3

33

room

room
3

room
3

3

3 3 3
3

33 3
room

Fig. 1: Qualitative Results. We evaluate our system’s exploration capabilities across various tasks, including pushing the chair aside to
reveal space behind it, lifting cloth to check underneath, flipping open boxes to inspect the contents, and exploring a household scene.
These tasks showcase the system’s ability to generalize across different object types, scenarios, and object relations. Additional tasks can
be found on the project page.

https://bdaiinstitute.github.io/curiousbot/

| | \---object_9 (moved)
| \---handle_2 (opened)
| \---object_5 (moved)
|---object_7
\---cabinet_6

\---handle_4 (opened)

answer
action:
none

explore several cabinets and
obstruction objects
graph:
root
|---sealed_box_1
|---sealed_box_2
\---open_box_3 [obstruction]

answer
action:
flip open_box_3 # affected_objects:
open_box_3

II. EXPERIMENTS

A. Full Qualitative Results

Due to the page limitation, we only show partial results
in our main paper. Here we list more complete qualitative
results in Figure 1.

	Method
	IoU Computation
	Unknown Space
	Relation Detection
	Graph Serialization
	Prompts Examples

	Experiments
	Full Qualitative Results

