planner.core.logger
#
Module Contents#
- class planner.core.logger.Logger(graph: jacta.planner.core.graph.Graph, params: jacta.planner.core.parameter_container.ParameterContainer, search_index: int = 0, log_path: str = '/workspaces/bdai/projects/jacta/log/', log_file: str | None = None)#
- Parameters:
graph (jacta.planner.core.graph.Graph) –
params (jacta.planner.core.parameter_container.ParameterContainer) –
search_index (int) –
log_path (str) –
log_file (Optional[str]) –
- reset() None #
- Return type:
None
- get_log_name() str | None #
Get where the log is stored
- Return type:
Optional[str]
- log_params() None #
- Return type:
None
- log_search(iteration_number: int) None #
- Parameters:
iteration_number (int) –
- Return type:
None
- log_node_selection(node_ids: torch.IntTensor, strategy: jacta.planner.core.types.SelectionType) None #
- Parameters:
node_ids (torch.IntTensor) –
strategy (jacta.planner.core.types.SelectionType) –
- Return type:
None
- log_action_sampler(node_ids: torch.IntTensor, strategy: jacta.planner.core.types.ActionType) None #
- Parameters:
node_ids (torch.IntTensor) –
strategy (jacta.planner.core.types.ActionType) –
- Return type:
None
- log_node_extension(node_ids: torch.IntTensor, best_id: torch.IntTensor, dynamics_time: float) None #
- Parameters:
node_ids (torch.IntTensor) –
best_id (torch.IntTensor) –
dynamics_time (float) –
- Return type:
None
- log_node_pruning(node_id: int, strategy: str, num_removed_nodes: int) None #
- Parameters:
node_id (int) –
strategy (str) –
num_removed_nodes (int) –
- Return type:
None
- create_distance_log() None #
- Return type:
None
- create_reward_log() None #
- Return type:
None
- simple_progress_statistics() None #
- Return type:
None
- simple_path_statistics() Tuple[torch.FloatTensor, torch.FloatTensor] #
- Return type:
Tuple[torch.FloatTensor, torch.FloatTensor]