visualizers.viser_app.tasks.acrobot
#
Module Contents#
- visualizers.viser_app.tasks.acrobot.XML_PATH#
- class visualizers.viser_app.tasks.acrobot.AcrobotConfig#
Bases:
jacta.visualizers.viser_app.tasks.task.TaskConfig
Reward configuration for the acrobot task. .. py:attribute:: default_command
- type:
Optional[numpy.ndarray]
- w_vertical: float = 10.0#
- w_velocity: float = 0.1#
- w_control: float = 0.1#
- p_vertical: float = 0.01#
- cutoff_time: float = 0.15#
- class visualizers.viser_app.tasks.acrobot.Acrobot#
Bases:
jacta.visualizers.viser_app.tasks.mujoco_task.MujocoTask
[AcrobotConfig
]Defines the acrobot balancing task. .. py:method:: reward(states: numpy.ndarray, sensors: numpy.ndarray, controls: numpy.ndarray, config: AcrobotConfig, additional_info: dict[str, Any]) -> numpy.ndarray
Implements the acrobot reward from MJPC.
Maps a list of states, list of controls, to a batch of rewards (summed over time) for each rollout.
The acrobot reward has four terms:
* `vertical_rew`, penalizing the distance between the pole angle and vertical. * `velocity_rew` penalizing squared linear and angular velocity. * `control_rew` penalizing any actuation.
Since we return rewards, each penalty term is returned as negative. The max reward is zero.
- reset() None #
Resets the model to a default (random) state.
- Return type:
None