# Part of Spatial Math Toolbox for Python
# Copyright (c) 2000 Peter Corke
# MIT Licence, see details in top-level file: LICENCE
"""
These functions create and manipulate quaternions or unit quaternions.
The quaternion is represented
by a 1D NumPy array with 4 elements: s, x, y, z.
"""
# pylint: disable=invalid-name
import sys
import math
import numpy as np
import spatialmath.base as smb
from spatialmath.base.argcheck import getunit
from spatialmath.base.types import *
import scipy.interpolate as interpolate
from typing import Optional
from functools import lru_cache
import warnings
_eps = np.finfo(np.float64).eps
[docs]def qeye() -> QuaternionArray:
"""
Create an identity quaternion
:return: an identity quaternion
:rtype: ndarray(4)
Creates an identity quaternion, with the scalar part equal to one, and
a zero vector value.
.. runblock:: pycon
>>> from spatialmath.base import qeye, qprint
>>> q = qeye()
>>> qprint(q)
"""
return np.r_[1, 0, 0, 0]
[docs]def qpure(v: ArrayLike3) -> QuaternionArray:
"""
Create a pure quaternion
:arg v: 3D vector
:type v: array_like(3)
:return: pure quaternion
:rtype: ndarray(4)
Creates a pure quaternion, with a zero scalar value and the vector part
equal to the passed vector value.
.. runblock:: pycon
>>> from spatialmath.base import qpure, qprint
>>> q = qpure([1, 2, 3])
>>> qprint(q)
"""
v = smb.getvector(v, 3)
return np.r_[0, v]
[docs]def qpositive(q: ArrayLike4) -> QuaternionArray:
"""
Quaternion with positive scalar part
:arg q: quaternion
:type v: : ndarray(4)
:return: pure quaternion
:rtype: ndarray(4)
If the scalar part is negative return -q.
"""
if q[0] < 0:
return -q
else:
return q
[docs]def qnorm(q: ArrayLike4) -> float:
r"""
Norm of a quaternion
:arg q: quaternion
:type v: : array_like(4)
:return: norm of the quaternion
:rtype: float
Returns the norm (length or magnitude) of the input quaternion which is
.. math::
(s^2 + v_x^2 + v_y^2 + v_z^2)^{1/2}
.. runblock:: pycon
>>> from spatialmath.base import qnorm
>>> q = qnorm([1, 2, 3, 4])
>>> print(q)
:seealso: :func:`qunit`
"""
q = smb.getvector(q, 4)
return np.linalg.norm(q)
[docs]def qunit(q: ArrayLike4, tol: float = 20) -> UnitQuaternionArray:
"""
Create a unit quaternion
:arg v: quaterion
:type v: array_like(4)
:param tol: Tolerance in multiples of eps, defaults to 20
:type tol: float, optional
:return: a pure quaternion
:rtype: ndarray(4)
:raises ValueError: quaternion has (near) zero norm
Creates a unit quaternion, with unit norm, by scaling the input quaternion.
.. runblock:: pycon
>>> from spatialmath.base import qunit, qprint
>>> q = qunit([1, 2, 3, 4])
>>> qprint(q)
.. note:: Scalar part is always positive.
.. note:: If the quaternion norm is less than ``tol * eps`` an exception is
raised.
:seealso: :func:`qnorm`
"""
q = smb.getvector(q, 4)
nm = np.linalg.norm(q)
if abs(nm) < tol * _eps:
raise ValueError("cannot normalize (near) zero length quaternion")
else:
q /= nm
if q[0] >= 0:
return q
else:
return -q
[docs]def qisunit(q: ArrayLike4, tol: float = 20) -> bool:
"""
Test if quaternion has unit length
:param v: quaternion
:type v: array_like(4)
:param tol: tolerance in units of eps, defaults to 20
:type tol: float
:return: whether quaternion has unit length
:rtype: bool
.. runblock:: pycon
>>> from spatialmath.base import qeye, qpure, qisunit
>>> q = qeye()
>>> qisunit(q)
>>> q = qpure([1, 2, 3])
>>> qisunit(q)
:seealso: :func:`qunit`
"""
return smb.iszerovec(q, tol=tol)
@overload
def qisequal(
q1: ArrayLike4,
q2: ArrayLike4,
tol: float = 20,
unitq: Optional[bool] = False,
) -> bool:
...
@overload
def qisequal(
q1: ArrayLike4,
q2: ArrayLike4,
tol: float = 20,
unitq: Optional[bool] = True,
) -> bool:
...
[docs]def qisequal(q1, q2, tol: float = 20, unitq: Optional[bool] = False):
"""
Test if quaternions are equal
:param q1: quaternion
:type q1: array_like(4)
:param q2: quaternion
:type q2: array_like(4)
:param unitq: quaternions are unit quaternions
:type unitq: bool
:param tol: tolerance in units of eps, defaults to 20
:type tol: float
:return: whether quaternions are equal
:rtype: bool
Tests if two quaternions are equal.
For unit-quaternions ``unitq=True`` the double mapping is taken into account,
that is ``q`` and ``-q`` represent the same orientation and ``isequal(q, -q, unitq=True)`` will
return ``True``.
.. runblock:: pycon
>>> from spatialmath.base import qisequal
>>> q1 = [1, 2, 3, 4]
>>> q2 = [-1, -2, -3, -4]
>>> qisequal(q1, q2)
>>> qisequal(q1, q2, unitq=True)
"""
q1 = smb.getvector(q1, 4)
q2 = smb.getvector(q2, 4)
if unitq:
return (np.sum(np.abs(q1 - q2)) < tol * _eps) or (
np.sum(np.abs(q1 + q2)) < tol * _eps
)
else:
return np.sum(np.abs(q1 - q2)) < tol * _eps
[docs]def q2v(q: ArrayLike4) -> R3:
"""
Convert unit-quaternion to 3-vector
:arg q: unit-quaternion
:type v: array_like(4)
:return: a unique 3-vector
:rtype: ndarray(3)
Returns a unique 3-vector representing the input unit-quaternion. The sign
of the scalar part is made positive, if necessary by multiplying the
entire quaternion by -1, then the vector part is taken.
.. runblock:: pycon
>>> from spatialmath.base import q2v
>>> from math import sqrt
>>> q = [1 / sqrt(2), 0, 1 / sqrt(2), 0]
>>> print(q2v(q))
>>> q = [-1 / sqrt(2), 0, 1 / sqrt(2), 0]
>>> print(q2v(q))
.. warning:: There is no check that the passed value is a unit-quaternion.
:seealso: :func:`v2q`
"""
q = smb.getvector(q, 4)
if q[0] >= 0:
return q[1:4]
else:
return -q[1:4]
[docs]def v2q(v: ArrayLike3) -> UnitQuaternionArray:
r"""
Convert 3-vector to unit-quaternion
:arg v: vector part of unit quaternion
:type v: array_like(3)
:return: a unit quaternion
:rtype: ndarray(4)
Returns a unit-quaternion reconsituted from just its vector part. Assumes
that the scalar part was positive, so :math:`s = \sqrt{1-||v||}`.
.. runblock:: pycon
>>> from spatialmath.base import v2q, qprint
>>> from math import sqrt
>>> v = [0, 1 / sqrt(2), 0]
>>> qprint(v2q(v))
>>> v = [0, -1 / sqrt(2), 0]
>>> qprint(v2q(v))
.. warning:: There is no check that the value is the vector part of
a unit-quaternion, and this can lead to a math domain error.
:seealso: :func:`q2v`
"""
v = smb.getvector(v, 3)
s = math.sqrt(1 - np.sum(v**2))
return np.r_[s, v]
[docs]def qqmul(q1: ArrayLike4, q2: ArrayLike4) -> QuaternionArray:
"""
Quaternion multiplication
:arg q0: left-hand quaternion
:type q0: : array_like(4)
:arg q1: right-hand quaternion
:type q1: array_like(4)
:return: quaternion product
:rtype: ndarray(4)
This is the quaternion or Hamilton product. If both operands are unit-quaternions then
the product will be a unit-quaternion.
.. runblock:: pycon
>>> from spatialmath.base import qqmul
>>> q1 = [1, 2, 3, 4]
>>> q2 = [5, 6, 7, 8]
>>> qqmul(q1, q2) # conventional Hamilton product
:seealso: qvmul, qinner, vvmul
"""
q1 = smb.getvector(q1, 4)
q2 = smb.getvector(q2, 4)
s1 = q1[0]
v1 = q1[1:4]
s2 = q2[0]
v2 = q2[1:4]
return np.r_[s1 * s2 - np.dot(v1, v2), s1 * v2 + s2 * v1 + np.cross(v1, v2)]
[docs]def qinner(q1: ArrayLike4, q2: ArrayLike4) -> float:
"""
Quaternion inner product
:arg q0: quaternion
:type q0: : array_like(4)
:arg q1: uaternion
:type q1: array_like(4)
:return: inner product
:rtype: float
This is the inner or dot product of two quaternions, it is the sum of the element-wise
product.
- The inner product ``inner(q, q)`` is the square of the norm of ``q``.
- If ``q0`` and ``q1`` are unit quaternions then the inner product is the
cosine of the angle between the two orientations.
.. runblock:: pycon
>>> from spatialmath.base import qinner
>>> from math import sqrt, acos, pi
>>> q1 = [1, 2, 3, 4]
>>> qinner(q1, q1) # square of the norm
>>> q1 = [1/sqrt(2), 1/sqrt(2), 0, 0] # 90deg rotation about x-axis
>>> q2 = [1/sqrt(2), 0, 1/sqrt(2), 0] # 90deg rotation about y-axis
>>> acos(qinner(q1, q2)) * 180 / pi # angle between q1 and q2
:seealso: qvmul
"""
q1 = smb.getvector(q1, 4)
q2 = smb.getvector(q2, 4)
return np.dot(q1, q2)
[docs]def qvmul(q: ArrayLike4, v: ArrayLike3) -> R3:
"""
Vector rotation
:arg q: unit-quaternion
:type q: array_like(4)
:arg v: 3-vector to be rotated
:type v: array_like(3)
:return: rotated 3-vector
:rtype: ndarray(3)
The vector `v` is rotated about the origin by the SO(3) equivalent of the unit
quaternion.
.. runblock:: pycon
>>> from spatialmath.base import qvmul
>>> from math import sqrt
>>> q = [1/sqrt(2), 1/sqrt(2), 0, 0] # 90deg rotation about x-axis
>>> qvmul(q, [1, 2, 3]) # rotated vector
.. warning:: There is no check that the passed value is a unit-quaternions.
:seealso: qvmul
"""
q = smb.getvector(q, 4)
v = smb.getvector(v, 3)
qv = qqmul(q, qqmul(qpure(v), qconj(q)))
return qv[1:4]
[docs]def vvmul(qa: ArrayLike3, qb: ArrayLike3) -> R3:
"""
Quaternion multiplication
:arg qa: left-hand quaternion
:type qa: : array_like(3)
:arg qb: right-hand quaternion
:type qb: array_like(3)
:return: quaternion product
:rtype: ndarray(3)
This is the quaternion or Hamilton product of unit-quaternions defined only
by their vector components. The product will be a unit-quaternion, defined only
by its vector component.
.. runblock:: pycon
>>> from spatialmath.base import vvmul, v2q, q2v, qqmul, qprint
>>> from math import sqrt
>>> q1 = [1/sqrt(2), 1/sqrt(2), 0, 0] # 90deg rotation about x-axis
>>> q2 = [1/sqrt(2), 0, 1/sqrt(2), 0] # 90deg rotation about y-axis
>>> qprint(qqmul(q1, q2)) # normal Hamilton product
>>> v1 = q2v(q1); v2 = q2v(q2)
>>> vp = vvmul(v1, v2) # product using 3-vectors
>>> qprint(v2q(vp)) # same answer as Hamilton product
:seealso: :func:`q2v` :func:`v2q` :func:`qvmul`
"""
t6 = math.sqrt(1.0 - np.sum(qa**2))
t11 = math.sqrt(1.0 - np.sum(qb**2))
return np.r_[
qa[1] * qb[2] - qb[1] * qa[2] + qb[0] * t6 + qa[0] * t11,
-qa[0] * qb[2] + qb[0] * qa[2] + qb[1] * t6 + qa[1] * t11,
qa[0] * qb[1] - qb[0] * qa[1] + qb[2] * t6 + qa[2] * t11,
]
[docs]def qpow(q: ArrayLike4, power: int) -> QuaternionArray:
"""
Raise quaternion to a power
:arg q: quaternion
:type v: array_like(4)
:arg power: exponent
:type power: int
:return: input quaternion raised to the specified power
:rtype: ndarray(4)
:raises ValueError: if exponent is non integer
Raises a quaternion to the specified power using repeated multiplication.
.. runblock:: pycon
>>> from spatialmath.base import qpow, qqmul, qprint
>>> q = [1, 2, 3, 4]
>>> qprint(qqmul(q, q))
>>> qprint(qpow(q, 2))
>>> qprint(qpow(q, -2)) # conjugate of above
.. note:
- Power must be an integer
- Power can be negative, in which case the conjugate is taken
:seealso: :func:`qqmul`
:SymPy: supported for ``q`` but not ``power``.
"""
q = smb.getvector(q, 4)
if not isinstance(power, int):
raise ValueError("Power must be an integer")
qr = qeye()
for _ in range(0, abs(power)):
qr = qqmul(qr, q)
if power < 0:
qr = qconj(qr)
return qr
[docs]def qconj(q: ArrayLike4) -> QuaternionArray:
"""
Quaternion conjugate
:arg q: quaternion
:type v: array_like(4)
:return: conjugate of input quaternion
:rtype: ndarray(4)
Conjugate of quaternion, the vector part is negated.
.. runblock:: pycon
>>> from spatialmath.base import qconj, qprint
>>> q = [1, 2, 3, 4]
>>> qprint(qconj(q))
:SymPy: supported
"""
q = smb.getvector(q, 4)
return np.r_[q[0], -q[1:4]]
[docs]def q2r(
q: Union[UnitQuaternionArray, ArrayLike4], order: Optional[str] = "sxyz"
) -> SO3Array:
"""
Convert unit-quaternion to SO(3) rotation matrix
:arg q: unit-quaternion
:type v: array_like(4)
:param order: the order of the quaternion elements. Must be 'sxyz' or
'xyzs'. Defaults to 'sxyz'.
:type order: str
:return: corresponding SO(3) rotation matrix
:rtype: ndarray(3,3)
Returns an SO(3) rotation matrix corresponding to this unit-quaternion.
.. runblock:: pycon
>>> from spatialmath.base import q2r
>>> q = [0, 0, 1, 0] # rotation of 180deg about y-axis
>>> print(q2r(q))
.. warning:: There is no check that the passed value is a unit-quaternion.
:seealso: :func:`r2q`
"""
q = smb.getvector(q, 4)
if order == "sxyz":
s, x, y, z = q
elif order == "xyzs":
x, y, z, s = q
else:
raise ValueError("order is invalid, must be 'sxyz' or 'xyzs'")
return np.array(
[
[1 - 2 * (y**2 + z**2), 2 * (x * y - s * z), 2 * (x * z + s * y)],
[2 * (x * y + s * z), 1 - 2 * (x**2 + z**2), 2 * (y * z - s * x)],
[2 * (x * z - s * y), 2 * (y * z + s * x), 1 - 2 * (x**2 + y**2)],
]
)
[docs]def r2q(
R: SO3Array,
check: Optional[bool] = False,
tol: float = 20,
order: Optional[str] = "sxyz",
shortest: bool = False,
) -> UnitQuaternionArray:
"""
Convert SO(3) rotation matrix to unit-quaternion
:arg R: SO(3) rotation matrix
:type R: ndarray(3,3)
:param check: check validity of rotation matrix, default False
:type check: bool
:param tol: tolerance in units of eps, defaults to 20
:type tol: float
:param order: the order of the returned quaternion elements. Must be 'sxyz' or
'xyzs'. Defaults to 'sxyz'.
:type order: str
:param shortest: ensures the quaternion has non-negative scalar part.
:type shortest: bool, default to False
:return: unit-quaternion as Euler parameters
:rtype: ndarray(4)
:raises ValueError: for non SO(3) argument
Returns a unit-quaternion corresponding to the input SO(3) rotation matrix.
.. runblock:: pycon
>>> from spatialmath.base import r2q, qprint, rotx
>>> R = rotx(90, 'deg') # rotation of 90deg about x-axis
>>> print(R)
>>> qprint(r2q(R))
.. warning:: There is no check that the passed matrix is a valid rotation matrix.
.. note::
- Scalar part is always positive
- implements Cayley's method
:reference:
- Sarabandi, S., and Thomas, F. (March 1, 2019).
"A Survey on the Computation of Quaternions From Rotation Matrices."
ASME. J. Mechanisms Robotics. April 2019; 11(2): 021006.
`doi.org/10.1115/1.4041889 <https://doi.org/10.1115/1.4041889>`_
:seealso: :func:`q2r`
"""
if not smb.isrot(R, check=check, tol=tol):
raise ValueError("Argument must be a valid SO(3) matrix")
t12p = (R[0, 1] + R[1, 0]) ** 2
t13p = (R[0, 2] + R[2, 0]) ** 2
t23p = (R[1, 2] + R[2, 1]) ** 2
t12m = (R[0, 1] - R[1, 0]) ** 2
t13m = (R[0, 2] - R[2, 0]) ** 2
t23m = (R[1, 2] - R[2, 1]) ** 2
d1 = (R[0, 0] + R[1, 1] + R[2, 2] + 1) ** 2
d2 = (R[0, 0] - R[1, 1] - R[2, 2] + 1) ** 2
d3 = (-R[0, 0] + R[1, 1] - R[2, 2] + 1) ** 2
d4 = (-R[0, 0] - R[1, 1] + R[2, 2] + 1) ** 2
e = np.array(
[
math.sqrt(d1 + t23m + t13m + t12m) / 4.0,
math.sqrt(t23m + d2 + t12p + t13p) / 4.0,
math.sqrt(t13m + t12p + d3 + t23p) / 4.0,
math.sqrt(t12m + t13p + t23p + d4) / 4.0,
]
)
i = np.argmax(e)
if i == 0:
e[1] = math.copysign(e[1], R[2, 1] - R[1, 2])
e[2] = math.copysign(e[2], R[0, 2] - R[2, 0])
e[3] = math.copysign(e[3], R[1, 0] - R[0, 1])
elif i == 1:
e[0] = math.copysign(e[0], R[2, 1] - R[1, 2])
e[2] = math.copysign(e[2], R[1, 0] + R[0, 1])
e[3] = math.copysign(e[3], R[0, 2] + R[2, 0])
elif i == 2:
e[0] = math.copysign(e[0], R[0, 2] - R[2, 0])
e[1] = math.copysign(e[1], R[1, 0] + R[0, 1])
e[3] = math.copysign(e[3], R[2, 1] + R[1, 2])
else:
e[0] = math.copysign(e[0], R[1, 0] - R[0, 1])
e[1] = math.copysign(e[1], R[0, 2] + R[2, 0])
e[2] = math.copysign(e[2], R[2, 1] + R[1, 2])
if shortest and e[0] < 0:
e = -e
if order == "sxyz":
return e
elif order == "xyzs":
return e[[1, 2, 3, 0]]
else:
raise ValueError("order is invalid, must be 'sxyz' or 'xyzs'")
# def r2q_svd(R):
# U = np.array(
# [
# [
# R[0, 0] + R[1, 1] + R[2, 2] + 1,
# R[2, 1] - R[1, 2],
# -R[2, 0] + R[0, 2],
# R[1, 0] - R[0, 1],
# ],
# [
# R[2, 1] - R[1, 2],
# R[0, 0] - R[1, 1] - R[2, 2] + 1,
# R[1, 0] + R[0, 1],
# R[2, 0] + R[0, 2],
# ],
# [
# -R[2, 0] + R[0, 2],
# R[1, 0] + R[0, 1],
# -R[0, 0] + R[1, 1] - R[2, 2] + 1,
# R[2, 1] + R[1, 2],
# ],
# [
# R[1, 0] - R[0, 1],
# R[2, 0] + R[0, 2],
# R[2, 1] + R[1, 2],
# -R[0, 0] - R[1, 1] + R[2, 2] + 1,
# ],
# ]
# )
# U, S, VT = np.linalg.svd(U)
# e = U[:, 0]
# # if e[0] < -10 * _eps:
# # e = -e
# return e
# def r2q_old(R, check=False, tol=100):
# """
# Convert SO(3) rotation matrix to unit-quaternion
# :arg R: SO(3) rotation matrix
# :type R: ndarray(3,3)
# :param check: check validity of rotation matrix, default False
# :type check: bool
# :param tol: tolerance in units of eps
# :type tol: float
# :return: unit-quaternion
# :rtype: ndarray(4)
# :raises ValueError: for non SO(3) argument
# Returns a unit-quaternion corresponding to the input SO(3) rotation matrix.
# .. runblock:: pycon
# >>> from spatialmath.base import r2q, qprint, rotx
# >>> R = rotx(90, 'deg') # rotation of 90deg about x-axis
# >>> print(R)
# >>> qprint(r2q(R))
# .. warning:: There is no check that the passed matrix is a valid rotation matrix.
# .. note:: Scalar part is always positive.
# :reference:
# - Funda, Taylor, IEEE Trans. Robotics and Automation, 6(3),
# June 1990, pp.382-388. (coding reference)
# - Sarabandi, S., and Thomas, F. (March 1, 2019).
# "A Survey on the Computation of Quaternions From Rotation Matrices."
# ASME. J. Mechanisms Robotics. April 2019; 11(2): 021006. (according to this
# paper the algorithm is Hughes' method)
# :seealso: :func:`q2r`
# """
# if not smb.isrot(R, check=check, tol=tol):
# raise ValueError("Argument must be a valid SO(3) matrix")
# qs = math.sqrt(max(0, np.trace(R) + 1)) / 2.0 # scalar part
# kx = R[2, 1] - R[1, 2] # Oz - Ay
# ky = R[0, 2] - R[2, 0] # Ax - Nz
# kz = R[1, 0] - R[0, 1] # Ny - Ox
# # equation (7)
# if (R[0, 0] >= R[1, 1]) and (R[0, 0] >= R[2, 2]):
# kx1 = R[0, 0] - R[1, 1] - R[2, 2] + 1 # Nx - Oy - Az + 1
# ky1 = R[1, 0] + R[0, 1] # Ny + Ox
# kz1 = R[2, 0] + R[0, 2] # Nz + Ax
# add = kx >= 0
# elif R[1, 1] >= R[2, 2]:
# kx1 = R[1, 0] + R[0, 1] # Ny + Ox
# ky1 = R[1, 1] - R[0, 0] - R[2, 2] + 1 # Oy - Nx - Az + 1
# kz1 = R[2, 1] + R[1, 2] # Oz + Ay
# add = ky >= 0
# else:
# kx1 = R[2, 0] + R[0, 2] # Nz + Ax
# ky1 = R[2, 1] + R[1, 2] # Oz + Ay
# kz1 = R[2, 2] - R[0, 0] - R[1, 1] + 1 # Az - Nx - Oy + 1
# add = kz >= 0
# # equation (8)
# if add:
# kx = kx + kx1
# ky = ky + ky1
# kz = kz + kz1
# else:
# kx = kx - kx1
# ky = ky - ky1
# kz = kz - kz1
# kv = np.r_[kx, ky, kz]
# nm = np.linalg.norm(kv)
# if abs(nm) < tol * _eps:
# return qeye()
# else:
# return np.r_[qs, (math.sqrt(1.0 - qs**2) / nm) * kv]
[docs]def qslerp(
q0: ArrayLike4,
q1: ArrayLike4,
s: float,
shortest: Optional[bool] = False,
tol: float = 20,
) -> UnitQuaternionArray:
"""
Quaternion conjugate
:arg q0: initial unit quaternion
:type q0: array_like(4)
:arg q1: final unit quaternion
:type q1: array_like(4)
:arg s: interpolation coefficient in the range [0,1]
:type s: float
:arg shortest: choose shortest distance [default False]
:type shortest: bool
:param tol: Tolerance when checking for identical quaternions, in multiples of eps, defaults to 20
:type tol: float, optional
:return: interpolated unit-quaternion
:rtype: ndarray(4)
:raises ValueError: s is outside interval [0, 1]
An interpolated quaternion between ``q0`` when ``s`` = 0 to ``q1`` when ``s`` = 1.
Interpolation is performed on a great circle on a 4D hypersphere. This is
a rotation about a single fixed axis in space which yields the straightest
and shortest path between two points.
For large rotations the path may be the *long way around* the circle,
the option ``'shortest'`` ensures always the shortest path.
.. runblock:: pycon
>>> from spatialmath.base import qslerp, qprint
>>> from math import sqrt
>>> q0 = [1/sqrt(2), 1/sqrt(2), 0, 0] # 90deg rotation about x-axis
>>> q1 = [1/sqrt(2), 0, 1/sqrt(2), 0] # 90deg rotation about y-axis
>>> qprint(qslerp(q0, q1, 0)) # this is q0
>>> qprint(qslerp(q0, q1, 1)) # this is q1
>>> qprint(qslerp(q0, q1, 0.5)) # this is in "half way" between
.. warning:: There is no check that the passed values are unit-quaternions.
"""
if not 0 <= s <= 1:
raise ValueError("s must be in the interval [0,1]")
q0 = smb.getvector(q0, 4)
q1 = smb.getvector(q1, 4)
if s == 0:
return q0
elif s == 1:
return q1
dotprod = np.dot(q0, q1)
# If the dot product is negative, the quaternions
# have opposite handed-ness and slerp won't take
# the shorter path. Fix by reversing one quaternion.
if shortest:
if dotprod < 0:
q0 = -q0 # pylint: disable=invalid-unary-operand-type
dotprod = -dotprod # pylint: disable=invalid-unary-operand-type
dotprod = np.clip(dotprod, -1, 1) # Clip within domain of acos()
theta = math.acos(dotprod) # theta is the angle between rotation vectors
if abs(theta) > tol * _eps:
s0 = math.sin((1 - s) * theta)
s1 = math.sin(s * theta)
return ((q0 * s0) + (q1 * s1)) / math.sin(theta)
else:
# quaternions are identical
return q0
def _compute_cdf_sin_squared(theta: float):
"""
Computes the CDF for the distribution of angular magnitude for uniformly sampled rotations.
:arg theta: angular magnitude
:rtype: float
:return: cdf of a given angular magnitude
:rtype: float
Helper function for uniform sampling of rotations with constrained angular magnitude.
This function returns the integral of the pdf of angular magnitudes (2/pi * sin^2(theta/2)).
"""
return (theta - np.sin(theta)) / np.pi
@lru_cache(maxsize=1)
def _generate_inv_cdf_sin_squared_interp(
num_interpolation_points: int = 256,
) -> interpolate.interp1d:
"""
Computes an interpolation function for the inverse CDF of the distribution of angular magnitude.
:arg num_interpolation_points: number of points to use in the interpolation function
:rtype: int
:return: interpolation function for the inverse cdf of a given angular magnitude
:rtype: interpolate.interp1d
Helper function for uniform sampling of rotations with constrained angular magnitude.
This function returns interpolation function for the inverse of the integral of the
pdf of angular magnitudes (2/pi * sin^2(theta/2)), which is not analytically defined.
"""
cdf_sin_squared_interp_angles = np.linspace(0, np.pi, num_interpolation_points)
cdf_sin_squared_interp_values = _compute_cdf_sin_squared(
cdf_sin_squared_interp_angles
)
return interpolate.interp1d(
cdf_sin_squared_interp_values, cdf_sin_squared_interp_angles
)
def _compute_inv_cdf_sin_squared(
x: ArrayLike, num_interpolation_points: int = 256
) -> ArrayLike:
"""
Computes the inverse CDF of the distribution of angular magnitude.
:arg x: value for cdf of angular magnitudes
:rtype: ArrayLike
:arg num_interpolation_points: number of points to use in the interpolation function
:rtype: int
:return: angular magnitude associate with cdf value
:rtype: ArrayLike
Helper function for uniform sampling of rotations with constrained angular magnitude.
This function returns the angle associated with the cdf value derived form integral of
the pdf of angular magnitudes (2/pi * sin^2(theta/2)), which is not analytically defined.
"""
inv_cdf_sin_squared_interp = _generate_inv_cdf_sin_squared_interp(
num_interpolation_points
)
return inv_cdf_sin_squared_interp(x)
[docs]def qrand(
theta_range: Optional[ArrayLike2] = None,
unit: str = "rad",
num_interpolation_points: int = 256,
) -> UnitQuaternionArray:
"""
Random unit-quaternion
:arg theta_range: angular magnitude range [min,max], defaults to None.
:type xrange: 2-element sequence, optional
:arg unit: angular units: 'rad' [default], or 'deg'
:type unit: str
:arg num_interpolation_points: number of points to use in the interpolation function
:rtype: int
:arg num_interpolation_points: number of points to use in the interpolation function
:rtype: int
:return: random unit-quaternion
:rtype: ndarray(4)
Computes a uniformly distributed random unit-quaternion, with in a maximum
angular magnitude, which can be considered equivalent to a random SO(3) rotation.
.. runblock:: pycon
>>> from spatialmath.base import qrand, qprint
>>> qprint(qrand())
"""
if theta_range is not None:
theta_range = getunit(theta_range, unit)
if (
theta_range[0] < 0
or theta_range[1] > np.pi
or theta_range[0] > theta_range[1]
):
ValueError(
"Invalid angular range. Must be within the range[0, pi]."
+ f" Recieved {theta_range}."
)
# Sample axis and angle independently, respecting the CDF of the
# angular magnitude under uniform sampling.
# Sample angle using inverse transform sampling based on CDF
# of the angular distribution (2/pi * sin^2(theta/2))
theta = _compute_inv_cdf_sin_squared(
np.random.uniform(
low=_compute_cdf_sin_squared(theta_range[0]),
high=_compute_cdf_sin_squared(theta_range[1]),
),
num_interpolation_points=num_interpolation_points,
)
# Sample axis uniformly using 3D normal distributed
v = np.random.randn(3)
v /= np.linalg.norm(v)
return np.r_[math.cos(theta / 2), (math.sin(theta / 2) * v)]
else:
u = np.random.uniform(low=0, high=1, size=3) # get 3 random numbers in [0,1]
return np.r_[
math.sqrt(1 - u[0]) * math.sin(2 * math.pi * u[1]),
math.sqrt(1 - u[0]) * math.cos(2 * math.pi * u[1]),
math.sqrt(u[0]) * math.sin(2 * math.pi * u[2]),
math.sqrt(u[0]) * math.cos(2 * math.pi * u[2]),
]
[docs]def qmatrix(q: ArrayLike4) -> R4x4:
"""
Convert quaternion to 4x4 matrix equivalent
:arg q: quaternion
:type v: array_like(4)
:return: equivalent matrix
:rtype: ndarray(4)
Hamilton multiplication between two quaternions can be considered as a
matrix-vector product, the left-hand quaternion is represented by an
equivalent 4x4 matrix and the right-hand quaternion as 4x1 column vector.
.. runblock:: pycon
>>> from spatialmath.base import qmatrix, qqmul, qprint
>>> q1 = [1, 2, 3, 4]
>>> q2 = [5, 6, 7, 8]
>>> qqmul(q1, q2) # conventional Hamilton product
>>> m = qmatrix(q1)
>>> print(m)
>>> v = m @ np.array(q2)
>>> print(v)
:seealso: qqmul
"""
q = smb.getvector(q, 4)
s = q[0]
x = q[1]
y = q[2]
z = q[3]
return np.array([[s, -x, -y, -z], [x, s, -z, y], [y, z, s, -x], [z, -y, x, s]])
[docs]def qdot(q: ArrayLike4, w: ArrayLike3) -> QuaternionArray:
"""
Rate of change of unit-quaternion
:arg q0: unit-quaternion
:type q0: array_like(4)
:arg w: 3D angular velocity in world frame
:type w: array_like(3)
:return: rate of change of unit quaternion
:rtype: ndarray(4)
``dot(q, w)`` is the rate of change of the elements of the unit quaternion ``q``
which represents the orientation of a body frame with angular velocity ``w`` in
the world frame.
.. runblock:: pycon
>>> from spatialmath.base import qdot, qprint
>>> from math import sqrt
>>> q = [1/sqrt(2), 1/sqrt(2), 0, 0] # 90deg rotation about x-axis
>>> qdot(q, [1, 2, 3])
.. warning:: There is no check that the passed values are unit-quaternions.
"""
q = smb.getvector(q, 4)
w = smb.getvector(w, 3)
E = q[0] * (np.eye(3, 3)) - smb.skew(q[1:4])
return 0.5 * np.r_[-np.dot(q[1:4], w), E @ w]
[docs]def qdotb(q: ArrayLike4, w: ArrayLike3) -> QuaternionArray:
"""
Rate of change of unit-quaternion
:arg q0: unit-quaternion
:type q0: array_like(4)
:arg w: 3D angular velocity in body frame
:type w: array_like(3)
:return: rate of change of unit quaternion
:rtype: ndarray(4)
``dotb(q, w)`` is the rate of change of the elements of the unit quaternion ``q``
which represents the orientation of a body frame with angular velocity ``w`` in
the body frame.
.. runblock:: pycon
>>> from spatialmath.base import qdotb, qprint
>>> from math import sqrt
>>> q = [1/sqrt(2), 1/sqrt(2), 0, 0] # 90deg rotation about x-axis
>>> qdotb(q, [1, 2, 3])
.. warning:: There is no check that the passed values are unit-quaternions.
"""
q = smb.getvector(q, 4)
w = smb.getvector(w, 3)
E = q[0] * (np.eye(3, 3)) + smb.skew(q[1:4])
return 0.5 * np.r_[-np.dot(q[1:4], w), E @ w]
[docs]def qangle(q1: ArrayLike4, q2: ArrayLike4) -> float:
"""
Angle between two unit-quaternions
:arg q0: unit-quaternion
:type q0: array_like(4)
:arg q1: unit-quaternion
:type q1: array_like(4)
:return: angle between the rotations [radians]
:rtype: float
If each of the input quaternions is considered a rotated coordinate
frame, then the angle is the smallest rotation required about a fixed
axis, to rotate the first frame into the second.
.. runblock:: pycon
>>> from spatialmath.base import qangle
>>> from math import sqrt
>>> q1 = [1/sqrt(2), 1/sqrt(2), 0, 0] # 90deg rotation about x-axis
>>> q2 = [1/sqrt(2), 0, 1/sqrt(2), 0] # 90deg rotation about y-axis
>>> qangle(q1, q2)
:References:
- Metrics for 3D rotations: comparison and analysis,
Du Q. Huynh, % J.Math Imaging Vis. DOFI 10.1007/s10851-009-0161-2.
.. warning:: There is no check that the passed values are unit-quaternions.
"""
# TODO different methods
q1 = smb.getvector(q1, 4)
q2 = smb.getvector(q2, 4)
return 4.0 * math.atan2(smb.norm(q1 - q2), smb.norm(q1 + q2))
[docs]def q2str(
q: Union[ArrayLike4, ArrayLike4],
delim: Optional[Tuple[str, str]] = ("<", ">"),
fmt: Optional[str] = "{: .4f}",
) -> str:
"""
Format a quaternion as a string
:arg q: unit-quaternion
:type q: array_like(4)
:arg delim: 2-list of delimeters [default ('<', '>')]
:type delim: list or tuple of strings
:arg fmt: printf-style format soecifier [default '{: .4f}']
:type fmt: str
:return: formatted string
:rtype: str
Format the quaternion in a human-readable form as::
S D1 VX VY VZ D2
where S, VX, VY, VZ are the quaternion elements, and D1 and D2 are a pair
of delimeters given by `delim`.
.. runblock:: pycon
>>> from spatialmath.base import q2str, qrand
>>> q = [1, 2, 3, 4]
>>> q2str(q)
>>> q = qrand() # a unit quaternion
>>> q2str(q, delim=('<<', '>>'))
:seealso: :meth:`qprint`
"""
q = smb.getvector(q, 4)
template = "# {} #, #, # {}".replace("#", fmt)
return template.format(q[0], delim[0], q[1], q[2], q[3], delim[1])
[docs]def qprint(
q: Union[ArrayLike4, ArrayLike4],
delim: Optional[Tuple[str, str]] = ("<", ">"),
fmt: Optional[str] = "{: .4f}",
file: Optional[TextIO] = sys.stdout,
) -> None:
"""
Format a quaternion to a file
:arg q: unit-quaternion
:type q: array_like(4)
:arg delim: 2-list of delimeters [default ('<', '>')]
:type delim: list or tuple of strings
:arg fmt: printf-style format soecifier [default '{: .4f}']
:type fmt: str
:arg file: destination for formatted string [default sys.stdout]
:type file: file object
Format the quaternion in a human-readable form as::
S D1 VX VY VZ D2
where S, VX, VY, VZ are the quaternion elements, and D1 and D2 are a pair
of delimeters given by `delim`.
By default the string is written to `sys.stdout`.
.. runblock:: pycon
>>> from spatialmath.base import qprint, qrand
>>> q = [1, 2, 3, 4]
>>> qprint(q)
>>> q = qrand() # a unit quaternion
>>> qprint(q, delim=('<<', '>>'))
:seealso: :meth:`q2str`
"""
q = smb.getvector(q, 4)
if file is None:
warnings.warn(
"Usage: qprint(..., file=None) -> str is deprecated, use q2str() instead",
DeprecationWarning,
)
print(q2str(q, delim=delim, fmt=fmt), file=file)
if __name__ == "__main__": # pragma: no cover
import pathlib
exec(
open(
pathlib.Path(__file__).parent.parent.parent.absolute()
/ "tests"
/ "base"
/ "test_quaternions.py"
).read()
) # pylint: disable=exec-used