Numerical utility functions

array2str(X, valuesep=', ', rowsep=' | ', fmt='{:.3g}', brackets=('[ ', ' ]'), suppress_small=True)[source]

Convert array to single line string

Parameters
  • X (ndarray(N,M), array_like(N)) – 1D or 2D array to convert

  • valuesep (str, optional) – separator between numbers, defaults to “, “

  • rowsep (str, optional) – separator between rows, defaults to ” | “

  • format – format string, defaults to “{:.3g}”

  • brackets (list, tuple of str) – strings to be added to start and end of the string, defaults to (”[ “, ” ]”). Set to None to suppress brackets.

  • suppress_small (bool, optional) – small values (\(|x| < 10^{-12}\) are converted to zero, defaults to True

Returns

compact string representation of array

Return type

str

Converts a small array to a compact single line representation.

Example:

>>> from spatialmath.base import array2str
>>> import numpy as np
>>> array2str(np.random.rand(2,2))
'[ 0.287, 0.821 | 0.983, 0.467 ]'
>>> array2str(np.random.rand(2,2), rowsep="; ")  # MATLAB-like
'[ 0.373, 0.689; 0.442, 0.724 ]'
>>> array2str(np.random.rand(3,))
'[ 0.444, 0.884, 0.122 ]'
>>> array2str(np.random.rand(3,1))
'[ 0.443 | 0.349 | 0.639 ]'
Seealso

array2str()

bresenham(p0, p1)[source]

Line drawing in a grid

Parameters
  • p0 (array_like(2) of int) – initial point

  • p1 (array_like(2) of int) – end point

Returns

arrays of x and y coordinates for points along the line

Return type

ndarray(N), ndarray(N) of int

Return x and y coordinate vectors for points in a grid that lie on a line from p0 to p1 inclusive.

  • The end points, and all points along the line are integers.

  • Points are always adjacent, but the slope from point to point is not constant.

Example:

>>> from spatialmath.base import bresenham
>>> bresenham((2, 4), (10, 10))
(array([ 2,  3,  4,  5,  6,  7,  8,  9, 10]), array([ 4,  5,  6,  6,  7,  8,  8,  9, 10]))

(Source code, png, hires.png, pdf)

_images/func_numeric-1.png

Note

The API is similar to the Bresenham algorithm but this implementation uses NumPy vectorised arithmetic which makes it faster than the Bresenham algorithm in Python.

gauss1d(mu, var, x)[source]

Gaussian function in 1D

Parameters
  • mu (float) – mean

  • var (float) – variance

  • x (array_like(n)) – x-coordinate values

Returns

Gaussian \(G(x)\)

Return type

ndarray(n)

Example:

>>> g = gauss1d(5, 2, np.linspace(0, 10, 100))

(Source code, png, hires.png, pdf)

_images/func_numeric-2.png
Seealso

gauss2d()

gauss2d(mu, P, X, Y)[source]

Gaussian function in 2D

Parameters
  • mu (array_like(2)) – mean

  • P (ndarray(2,2)) – covariance matrix

  • X (ndarray(n,m)) – array of x-coordinates

  • Y (ndarray(n,m)) – array of y-coordinates

Returns

Gaussian \(g(x,y)\)

Return type

ndarray(n,m)

Computed \(g_{i,j} = G(x_{i,j}, y_{i,j})\)

Example (RVC3 Fig G.2):

>>> a = np.linspace(-5, 5, 100)
>>> X, Y = np.meshgrid(a, a)
>>> P = np.diag([1, 2])**2;
>>> g = gauss2d(X, Y, [0, 0], P)

(Source code, png, hires.png, pdf)

_images/func_numeric-3.png
Seealso

gauss1d()

mpq_point(data, p, q)[source]

Moments of polygon

Parameters
  • data (ndarray(2,N)) – polygon vertices, points as columns

  • p (int) – moment order x

  • q (int) – moment order y

Returns the pq’th moment of the polygon

\[M(p, q) = \sum_{i=0}^{n-1} x_i^p y_i^q\]

Example:

>>> from spatialmath.base import mpq_point
>>> import numpy as np
>>> p = np.array([[1, 3, 2], [2, 2, 4]])
>>> mpq_point(p, 0, 0)  # area
3
>>> mpq_point(p, 3, 0)
36

Note

is negative for clockwise perimeter.

Return type

float

numhess(J, x, dx=1e-08)[source]

Numerically compute Hessian given Jacobian function

Parameters
  • J (callable) – the Jacobian function, returns an ndarray(m,n)

  • x (ndarray(n)) – function argument

  • dx (float, optional) – the numerical perturbation, defaults to 1e-8

Returns

Hessian matrix

Return type

ndarray(m,n,n)

Computes a numerical approximation to the Hessian for J(x) where \(f: \mathbb{R}^n \mapsto \mathbb{R}^{m \times n}\).

The result is a 3D array where

\[H_{i,j,k} = \frac{\partial J_{j,k}}{\partial x_i}\]

Uses first-order difference \(H[:,:,i] = (J(x + dx) - J(x)) / dx\).

numjac(f, x, dx=1e-08, SO=0, SE=0)[source]

Numerically compute Jacobian of function

Parameters
  • f (callable) – the function, returns an m-vector

  • x (ndarray(n)) – function argument

  • dx (float, optional) – the numerical perturbation, defaults to 1e-8

  • SO (int, optional) – function returns SO(N) matrix, defaults to 0

  • SE (int, optional) – function returns SE(N) matrix, defaults to 0

Returns

Jacobian matrix

Return type

ndarray(m,n)

Computes a numerical approximation to the Jacobian for f(x) where \(f: \mathbb{R}^n \mapsto \mathbb{R}^m\).

Uses first-order difference \(J[:,i] = (f(x + dx) - f(x)) / dx\).

If SO is 2 or 3, then it is assumed that the function returns an SO(N) matrix and the derivative is converted to a column vector

\[\vex{\dmat{R} \mat{R}^T}\]

If SE is 2 or 3, then it is assumed that the function returns an SE(N) matrix and the derivative is converted to a colun vector.

Example:

  File "/opt/hostedtoolcache/Python/3.7.17/x64/lib/python3.7/site-packages/spatialmath/base/transforms3d.py", line 82, in rotx
    theta = getunit(theta, unit, dim=0)
  File "/opt/hostedtoolcache/Python/3.7.17/x64/lib/python3.7/site-packages/spatialmath/base/argcheck.py", line 575, in getunit
    raise ValueError("for dim==0 input must be a scalar")
ValueError: for dim==0 input must be a scalar
Traceback (most recent call last):
  File "<input>", line 1, in <module>
  File "/opt/hostedtoolcache/Python/3.7.17/x64/lib/python3.7/site-packages/spatialmath/base/numeric.py", line 59, in numjac
    J0 = f(x)
  File "/opt/hostedtoolcache/Python/3.7.17/x64/lib/python3.7/site-packages/spatialmath/base/transforms3d.py", line 82, in rotx
    theta = getunit(theta, unit, dim=0)
  File "/opt/hostedtoolcache/Python/3.7.17/x64/lib/python3.7/site-packages/spatialmath/base/argcheck.py", line 575, in getunit
    raise ValueError("for dim==0 input must be a scalar")
ValueError: for dim==0 input must be a scalar
str2array(s)[source]

Convert compact single line string to array

Parameters

s (str) – string to convert

Returns

array

Return type

ndarray

Convert a string containing a “MATLAB-like” matrix definition to a NumPy array. A scalar has no delimiting square brackets and becomes a 1x1 array. A 2D array is delimited by square brackets, elements are separated by a comma, and rows are separated by a semicolon. Extra white spaces are ignored.

Example:

>>> from spatialmath.base import str2array
>>> str2array("5")
array([[5.]])
>>> str2array("[1 2 3]")
array([[1., 2., 3.]])
>>> str2array("[1 2; 3 4]")
array([[1., 2.],
       [3., 4.]])
>>> str2array(" [  1  , 2 ; 3 4  ] ")
array([[1., 2.],
       [3., 4.]])
>>> str2array("[1; 2; 3]")
array([[1.],
       [2.],
       [3.]])
Seealso

array2str()